Gauge finite element method for incompressible flows

نویسندگان

  • Weinan E
  • Jian-Guo Liu
  • J.-G. LIU
چکیده

A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Finite Element Method for Viscous Incompressible Thermal Flows

A finite element method for steady-state viscous incompressible thermal flows has been developed. The finite element equations are derived from a set of coupled nonlinear Navier-Stokes equations that consists of the conservation of mass, momentum, and energy equations. These derived finite element equations are validated by developing a corresponding finite element computer program that can be ...

متن کامل

Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation

A review of recent work and new developments are presented for the penalty-function, finite element formulation of incompressible viscous flows. Basic features of the penalty method are described in the context of the steady and unsteady Navier-Stokes equations. Galerkin and “upwind” treatments of convection terms are discussed. Numerical results indicate the versatility and effectiveness of th...

متن کامل

A Characteristics-Mix Stabilized Finite Element Method for Variable Density Incompressible Navier-Stokes Equations

This paper describes a characteristics-mix finite element method for the computation of incompressible Navier-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed me...

متن کامل

Simulation of incompressible flows with heat and mass transfer using parallel finite element method∗

The stabilized finite element formulations based on the SUPG (Streamline-Upwind/Petrov-Galerkin) and PSPG (Pressure-Stabilization/PetrovGalerkin) methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows) and the PSPG term eliminates instabilit...

متن کامل

Turbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method

Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000